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The spherical model of a ferromagnet is investigated for various (external) 
boundary conditions. It is shown that, besides the well-known critical point, a 
second one can be produced by the boundary conditions. Although the main 
asymptotic of the free energy is analytic at the new critical point, the O(N ~ ,_,.a) 
asymptotic possesses a singularity here. A natural order parameter of the model 
has singularities at both critical points. The magnetization profile is studied for 
the whole range of the model's parameters and at different scales. It is shown 
that (in an appropriate regime) below the second critical temperature the 
magnetization profile freezes, that is, .becomes temperature independent. 
Distributions of the single spin variables and some macroscopic observables 
(including normalized total spin) are studied for the whole temperature range 
including the critical points. 

KEY WORDS: Spherical model; magnetization profile; Gibbs states; phase 
transitions. 

1. INTRODUCTION. 

At the present  t ime it can  be said wi th  conf idence  tha t  proper t ies  of  va r ious  

2D  Ising mode ls  with (ex terna l )  b o u n d a r y  cond i t i ons  are  m u c h  bet ter  

unde r s tood  than  those  of  s imi lar  spher ical  mode l s  (for d>~ 3) in spite of  the 

fact that  inves t iga t ion  of  the fo rmer  needs m u c h  m o r e  e l abora t e  t echniques  

(for a review see, e.g., ref. 2). Var ious  m a g n e t i z a t i o n  profiles for 2 D  Ising 

mode ls  have  been s tudied  by A b r a h a m  and  Reed 131 and Bar i evJ  71 Wet t ing  

p h e n o m e n a  have  been t rea ted  in great  detai l  by A b r a h a m , l ~  A b r a h a m  and 
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Issigoni, 15~ and Fr6hlich and Pfister, t14~ to name a few. Various surface 
effects in the 2D Ising model were examined by Fisher and Ferdinand, tl-'l 
McCoy and Wu, t21) and Au Yang, ~61 among many others. 

Although some of the above phenomena have been treated in spherical 
models already by Langer, Its~ much less is known about these models in 
comparison with the wealth of results concerning 2D Ising models. 
Magnetization profiles have been studied by Abraham and Robert, ~4~ who 
gave explicit expressions for the profile in the presence of a "global" 
inhomogeneous external field and for the profile induced by boundary 
conditions in the high-temperature regime. Surprisingly enough, this paper 
seems to be the only one where the influence of (external) boundary condi- 
tions on the behavior of the spherical model was studied. Some other 
phenomena induced by inhomogeneous perturbations of the spherical 
model were considered by Isihara ~5~ and Barber et al.t9); see also Singh 
el aL ~2.~ 

It is generally recognized that investigations of the properties of the 
original spherical model ~~ and its different modifications (see the review 
by Joyce tl6)) were of considerable importance in the formation of our 
present understanding of critical phenomena and other branches of 
equilibrium statistical mechanics. The relative simplicity with which the 
properties of spherical models are analyzed is of great advantage in the 
investigation of subtle details. Thus, it seems reasonable to undertake a 
study of the influence of boundary conditions on the behavior of spherical 
models in analogous situations to those studied for various (undoubtedly, 
more realistic) 2D Ising models. 

In the present paper we propose a systematic approach to study the 
influence of (external) boundary conditions on the spherical model. Using 
this approach, we show that the spherical model in the presence of 
so-called +-boundary conditions--the model studied earlier by Abraham 
and Robert~4~--may have two critical points T c (the critical temperature 
found by Berlin and Kac I~~ and 7",. ( < 1",.). Next we obtain explicit expres- 
sions for various magnetization profiles for the model in the whole tem- 
perature range; see Eqs. (4.8) and (4.10)-(4.15). As by-products we obtain 
asymptotic expansions for the free energy up to the order O ( N  t -  2/a) (here 
N is the total number of spins and d is the dimensionality of the model); 
see Eqs. (3.18), (3.21), and (3.28). This number of terms in the asymptotic 
expansion is chosen because it is the O ( N  ~-2/d) term that has nontrivial 
behavior at all critical points of the model. An intuitive explanation and 
interpretation of these features requires knowledge of pair correlation func- 
tion decay and is postponed till a subsequent paper, where we are going to 
study the pair correlation functions and "block-spin" variables. In the 
present paper we also obtain distributions of single spin variables [see Eqs. 
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(5.3) and (5.7)] and some macroscopic observables in the thermodynamic 
limit [see Section 5]. 

The main technical tools we use are a "contour summation" technique 
(a direct analog of the contour integration in the theory of functions of a 
complex variable) and rescalings of the integration variable in the integral 
representations for the partition function, correlation functions, etc., prior 
to application of the saddle point method. Both tools have been used in a 
recent paper, t23~ It is well known that additional care is needed in applying 
the saddle point method to the evaluation of the partition function of the 
spherical model in the low-temperature regime. The problem is that the 
saddle point in this regime "sticks" at a branch point of the integrand. 
More precisely, the sequence of saddle points z* (indexed by the number 
of spins) tends to the branch point as N ~  ~ .  However, if one rescales the 
integration variable properly, it may happen that this problem disappears, 
that is, the sequence of (rescaled) saddle points converges to a point of 
analyticity of the integrand and thus one can apply the saddle point 
method after the rescaling. Alternatively it may happen that after the 
rescaling the large parameter N in the integrand "disappears"; then one 
needs just to investigate the limiting (as N ~ ~ )  integral, which in this case 
is well defined. As a rule the limiting integral can be evaluated using the 
contour integration technique. The latter possibility was exploited 
(apparently) for the first time by Lax. el9) 

The paper is organized as follows. The model of interest is described 
in Section 2. Section 3 is the central part of the paper. There we explain the 
main technical steps necessary for investigation of the spherical model in 
the presence of external boundary conditions and derive the asymptotic 
expansions of the free energy in various regimes. In Section 4 we examine 
magnetization profiles of the model. Probability distributions of the single 
spin variables and of some macroscopic observables are obtained in 
Section 5. Section 6 is devoted to the discussion of the results obtained 
and final remarks. In Appendix A we explain the "contour summation" 
technique which is widely used throughout the paper for summation 
of various sums. In Appendix B convergence rates are found for some 
sequence of sums which appeared in the main body of the paper. 

2. D E S C R I P T I O N  OF T H E  M O D E L  

The model we study was treated earlier by Abraham and Robert c4~ 
and is defined as follows. Consider a d-dimensional square lattice Z d for 
d>~3. There is a spin e . i e R  ~ at each site J - ( J , , J 2  ..... j d ) e Z  d (in what 
follows indices without subscript, like j, correspond to d-dimensional 
vectors, while indices with subscript, like j,., correspond to the vth 
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component of a vector j). A system of n d (=--N) spins located at sites 
of a hypercube s { j~Za:  1 <<.j,.<~n; v= 1, 2 ..... d} interacts via the 
Hamiltonian 

H,,(e)=-2J ~ 8,ej- ~ hisi (2.1) 

where the first sum runs over  all distinct pairs of nearest neighbors. To 
completely specify the Hamiltonian we must face the question of the 
boundary conditions (b.c.) to be applied. This involves two steps; first, one 
needs to specify the nearest neighbors for spins on the border of s and the 
interaction between them. We call these boundary conditions internal b.c. 
Second, one needs to specify the influence of an external environment on 
the spins in s (external b.c.). Specification of the internal b.c. modifies the 
quadratic part of the Hamiltonian and specification of the external b.c. 
modifies its linear part. We consider internal b.c. which are "empty" in one 
dimension, say for v = d, and periodic in all the others, i.e., the set of 
natural nearest neighbors in s is complemented by 

d - I  

U { ( i , j ) : i , , = l , j , . = n , i , = j ,  for l # v }  (2.2) 

and the interaction between additional nearest neighbors is the same as for 
all the other pairs in (2.1). The external b.c. which we consider are specified 
by the following choice of {h;}i~o, in Eq. (2.1): 

i t  if id= 1 
hi,.i2.....id = 2 if i d = n 

otherwise 

{2.3) 

The joint probability distribution of the random variables {Ej}j,a. (the 
Gibbs distribution) is defined by the density 

p({Sj}jeK2n) = O N  l exp[ - f in , , (  {~j}j~a,)] (2.4) 

with respect to the "a priorP" measure 

where 6(-) is the Dirac delta function and l-Ij~a dEj is the Lebesgue 
measure on (RN; ~(R'V)). 

For our investigation of the model we need to know the eigenvectors 
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and eigenvalues of the symmetric matrix d "~"~ associated with the quadratic 
part of the Hamiltonian (2.1) 

2 ~ e,ej= ~ C'"'~.~. (2.6) 
-- i;jvl~./ 

( i . j )  i lEOn 

where internal b.c. (2.2) are taken into account. These eigenvectors are 
given by 

{ V~- Vj,....oe = Vj:,,, = \-~-~] sin n +---T 

x 1-I cos 2re(j,- (ink-l) + 
k = l  n m E On 

(2.7) 

and their respective eigenvalues are 

I ~Ja +a ' 2n(jk--1)l (2.8) 2 j = 2  COSn+l ~ cos 
k = l  F/ 

3. A S Y M P T O T I C  E X P A N S I O N  FOR T H E  FREE E N E R G Y  

The partition function of the model is given by 

ON . . . .  exp[ -/~H,,(e)] d~,,(~) (3.1) 

[see (2.1) and (2.5)]. In the usual fashion, to diagonalize the quadratic 
part of H,,(e) one introduces new integration variables {y,},Ea. via 

ei= ~, Vj:.~y, (3.2) 
SEOn 

where the coefficients I{i:s are given by (2.7). Next one replaces the delta 
function in Eq. (3.1) by its integral representation 

1 f i~-' e ~" dr (3.3) 6(x)  = ~ i _,~ 

Then integration over {Ys} yields 

( 7 [  ~ N / 2 ~ J f " ~  ~z, N,7. eNt~N(:) oN = \~-~) . : _ (3.4) 
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2 a " ' + 8 ~  ~ - l (3.5) 

1 In ( z  I . 

and the coefficients ~,, are given by 

~.,,= Z hi,. jVj,..j,,:,.,, ....... . 
J l  ' " "  Jd  

Below we refer to the t ransformations yielding (3.4) from (3.1) as "the 
s tandard set of t ransformations."  Taking into account Eqs. (2.3), (2.7), one 
can rewrite ~,,, as 

H 6,,,,., (3.7) ~ " =  n ( n + l )  [ h t + ( - l ) " + ~ h z ] s i n \ - n - ~ / k =  ~ " 

Note that  the presence of external b.c. is summarized by the term 

T,,(~)~_L Z ~ (3.8) 
8Jjeo. z -  ~2i 

which we call the field-induced term. Performing the summat ion  in (3.8) 
(see Appendix A for details), one obtains 

~x2(z) I x ~ - ' ( z ) - I  .. . .  ' ( z ) +  1]  
T , , ( z ) = n - I N - - - - ~  ( h i - h , ) ' -  x~ - "S~.,,-S-t,_-STZ-- + (h~ + h , )  2 " (3.9) 

x_, ( z ) - I  - x ~ + ' ( z ) +  1 

where 

xl .z(z)  = 1 + z - d-T- [(z - d)(2 + z - d)]  i/2 (3.10) 

Taking into account Eqs. (3.9) and (B.19) from Appendix B one concludes 
that for any given z > d 

(I) N(~, ) -~- 2~Jz 1 _ -;.,,) - ~_Ld(,)  + n - l q ~ ( z )  + O(e 

where 

1 [/~x,(:) (h~ + h~) +/ . . ,_ , ( : -  l) + L~_ ,(~ + 1) - 2r~(: ) ]  ~o(z) = ~ L - - ) - -  
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and 

J'~" f ~  1-~I de~ In ( ~ ) =  L,, ( , )  (3.11) La(z) . . . .  ,. = i 2r~ z - ,.=l cos co,. u~.lim ~"~ - 

Now we evaluate the integral in Eq. (3.4) using the saddle point method. 
As is usual the relevant saddle point ,-*,, is a minimum point of the argu- 
ment of the exponential in (3.4) on the interval (�89 ; oo), where 2,.....~ is 
the maximal eigenvalue of the matrix (~"~; see (2.6). Thus, for finite n, ~-*,, 
is a real solution of the equation 

1 d 
2 ,8J -  �89 WIT'(z) + -~ -&z T,,(z) = 0 (3.12) 

satisfying z,* > d -  1 + cos[rt/(n + 1 )], where 

W~a")(z) =aLe'It'd,l: a ,- ,=~1 ~n _ l~,),j (3.13) 

The "global" location of the saddle point is governed by the first two 
terms of the l.h.s, of Eq. (3.12) since the third one is suppressed by n-~ [see 
Eq. (3.9)] and it is described as follows. Let the function 

qbl~ z ) = 2,sJz - �89 L a( z ) (3.14) 

have a minimum on the interval [d, co) at a point z*. The point z* is, of 
course, the limiting saddle point for the integrand in Eq. (3.4) and its 
location is independent of boundary conditions. According to Berlin and 
Kac, ~~ for any d>~3 there exists a critical value ,8 , .=Wa(d) /4J<oo 
[-where W a ( d ) -  L~(d)] such that z* > d for ,8 ~ [0;,8,.) (the high-tem- 
perature regime) and z * =  d for ,8 c [/~,.;oo) (the low-temperature regime). 

Now, for any z > d, the l.h.s, of Eq. (3.12) approaches 

(J,(z) = 2 ,8J -  �89 We(z)  + n -  'q f (z)  (3.15) 

exponentially fast as N ~ oo (see Appendix B) and this rate of convergence 
is uniform on any interval of the form {z: a ~ z <  oo, a > d } .  In Eq. (3.15) 
we used Wa(z) to denote the Watson function 

, ' - - lim W~a"~(z) (3.16) 
W,I(- ) = L,,(~ ) . . . .  27r z - 2,'(.=, cos co,. N - ~ 

v ~  1 
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In the h i g h - t e m p e r a t u r e  regime,  i.e., when  z * > d ,  Eqs. (3.12) and  (3.15) 
yield 

"* = z* + n - '  2~o'(z*) ,,, ~ + O ( n  -2 )  (3.17) 
W~(z*) 

as N ~  ~ .  By a p p l y i n g  the sadd le  po in t  m e t h o d  to the in tegra l  in (3.4) one  
ob t a in s  the a s y m p t o t i c  e x p a n s i o n  for the free energy,  when  f i e  [0;  tic), 

1 
r,,(fl) = --~ in oN 

= NIf( f l ;  z*) - N-'/uq~(z*)fl 

where  

[~o'(~*)]-" l _ _ _  N -  21,~ ~_ o( N -  2/d) l 
fl w~(z* ) J 

(3.18) 

1 ~ La(z*) 
f ( f l ; z*)= -~--~,ln-z--~,-2Jz*@zpj + 2 - - ~  (3.19) 

is the l imi t ing  free e m e r g y  per  site for  the  spher ica l  model .  

- -~Tr  2 
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Fig. 1, The function r(() [see Eq.(3.20)] representing the perturbation due to external 
boundary conditions. The values of the parameters are (fl/SJ)(h~-h2)2=l and 
(fl/8J)(h~ + h2) 2= 1/2, which means that h~ ~ -h2 and hence only one critical points exists. In 
the inset the same function is plotted for (fl/8JJ(h~-h2)2= 1 and h ~ = - h  2. Note that the 
(rightJ derivative at the point - -~n 2 is finite and hence the second critical point {fl ~ fl,.) has 
a chance of existing. 
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To be able to apply the saddle point method for the integral in 
Eq. (3.4) in the low-temperture  regime a new integration variable ( is 
needed (to pass to a finer scale). We make the ansatz z = z , , ( ( ) =  d+n-2(. 
Using Eq. (B.21), we obtain 

/, ~ \N/2 ~j {N[2~Jd_~L(d)+n_l~o(d)]}  exp 

f ~ + io~. d~ 

1 r(~)] + O(Nl-3/d)} x exp {N'- z/a [2flJ~-~ W(d)~ + (3.20) 

where 

1 ~/2 r(~)= -~-~(2~)l/2 {(Ih-h2)2cothI(-~ ) ]+(h, +h2)2tanh[(~)l/2]} 

for ( > 0, and 

r({) = - 8~ ( - 2{)'/2 

1 x { (h, -h2)2 cot [ ( -  ~ ~) l/2] - (hl + h2)2 tan [ ( -  -~ () l/21} 

for - �89 2 < ( < 0; see Fig. 1. 

R e m a r k  3.1.  Note  that  the correct analytic continuation of the 
function 

f ( ~ )  = (2~) l/z tanh[(�89 '/2 ] 

1 "~ on the interval ( -  _~n-; 0]  from the positive semiaxis is given by 

f(~) = -(-2~) '/z t a n [ ( -  �89 

as opposed to the naive continuation f ( ~ ) =  ( - 2 ~ )  1/2 t a n [ ( -  �89 
As long as the function 

q(~) = 2J(]~ -/~,.) ~ + ~(~) 

attains its min imum on the interval [ -  �89 or) at a point if* > - �89 one 
can apply the saddle point method for the integral in Eq. (3.20). Note that 

= - �89 z is a branch point of the integrand in Eq. (3.20), while ~ = 0 is just 

8 2 2 / 7 5 / 1 - 2 - 1 7  
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a removable singularity. On applying the saddle point method one obtains 
the following asymptotic expansion for the free energy: 

Fn(fl)= N {f(fl; d)--N-l/dqg(d)--N 2 / d I 2 J ( 1 - ' ~ )  (* + ~ I + o ( N  2/d) t 

(3.22) 

where (* is a solution of the equation 

2J(fl - fl,.) + z'(~) = 0 (3.22) 
1 2 satisfying (* > - ~n . 

Note that the function - ~ ' ( ( )  is monotonically decreasing to zero for 
( >  - � 8 9  2, since ~(() was derived from T,,(z) [given by (3.8)] by a uniform 
change of scale and - T;,(z) evidently decreases for z > d -  �89 Conse- 
quently, Eq. (3.22) has a unique solution ~*> - � 8 9  2 if r / ' ( -  �89 2) < 0, and 

1 2 .  the function t/(~) attains its minimum on [ - ~ n  ,oo) at the point 
( * =  --�89 2 if q'(()~>0. The expansion of r '(()  at the point ~= --�89 2 is 
given by 

~_[-2~2(h,+h2) 2 2 1 ~ (h,+h2) 2] 
( r  +3 (77-h~h2+h~-)-I ~ J 

1 
+ O ( ~ + ~  2) (3.23) 

Hence if hi # -h2 and fl > fl,. there always exists a saddle point ~*> - t r t  2 
for the integrand of (3.20), since for hi :~ -h2  the derivative of r(~) tends 
to - o o  as ~---, -~_~-. When h~ = -h2 = h the right derivative of z(~) at the 

1 v - -  1 "~ point - ~ -  is equal to - ( f l /4J )h  2 and a saddle point ~* > ~n- exists for 
all fl > fl,. only if �89 2 >/1. If, however, �89 < 1, then a saddle point 

1 "~ ~* > - ~n- exists only for fie (tic; fl,), where 

tic 
f l ' -  1 - �89 z 

Thus /~,. (as well as fl,.) is a "sticking" point and we will see later that it 
deserves to be called a critical temperature for the spherical model. 

Since for fl>/~,, the saddle point (* "sticks" at the branch point 
1 '~ = -_~n-, one needs to again rescale the integration variable in (3.20) via 

~= (~ + �89 , - Z/d, which together with Eqs. (B.22) and (B.23) yields 
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____l'rr'~u/2 {NI2~Jd_~L(d ) 'q~(d)-nZJTt2(fl-/3,.)+o(n-2)]} oN=k  ) exp + ,  

/3J f ~~ {~[2/3J-~W(d,-~:-~---j-:] ,} (3.24) iff,2 +oil 

where the integral makes a contribution only to the O(1) terms of the 
asymptotic expansion for the free energy. 

Summarizing the above, one concludes that the asymptotic expansion 
for F,,(/3) in the low-temperature regime is given by Eqs. (3.21) and (3.22), 
and if h l = -hz = h, �89 1, and/3 >/~c, one sets ~*= -~n'.l, 

To complete the whole picture one should calculate the asymptotic 
expansion of F,,(/3) at fl =/3,. [the corresponding expansion at /~e can be 
obtained by setting / 3 ~ , .  in Eq. (3.21)]. As in the case /3>/3,, it is 
necessary to rescale the integration variable z in Eq. (3.4) to obtain an 
integral for which the saddle point method can be applied. The way one 
needs to rescale z depends on dimension, since the expansion of the func- 
tion Ld(Z) near z = d possesses a nontrivial dependence on dimension, (8~ 

Ld(Z) = Ld(d) + Wd(d)(z -- d) 

-- (z-d)3/2+O[(z-d)2]  if d = 3  

1 + - ~ , ( z - d ) 2 1 n ( z - d ) + O [ ( z - d )  2] if d = 4  (3.25) 

1 W~(d)(z- d) 2 + o[(z - d)'-] if d~> 5 

After the rescaling 

I 
n -1 for d = 3  

z=z,,(()=d+va(n)~, where va(n)= (nlnn) -2/3 for d = 4  (3.26) 

{n-2/3 for di>5 

we are able to apply the saddle point method to the evaluation of the 
integral in Eq. (3.4). The location of the saddle point is given by 

rn/3(h~+h~) for d = 3  
2J 

r = / k 2~--J l for d = 4  (3.27) 

i "~ "~ "~/3 /3(h~+h~,_) l ] -- 

2 V/2JWj(d)_I for d>~ 5 
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and the asymptotic expansion of the free energy is 

F,,(fl,.) = N f  (fl .; d) - N l -l/d qJ( d) 

f ml/2c + o(m 1/2) if d =  3 

+ ~(ln N)l/3N2/3c4 + O ( N  2/3) if d =  4 (3.28) 

{NI-4/(3d)Cd+o(N|-4/(3dl ) if d~>5 

The amplitudes {Ca}a>, 3 in the last expression can be calculated exactly; for 
instance, when d =  3, one obtains 

|,2 + "2 

c , - ~ \ - 5 7 - /  

To conclude the section, let us stress a curious point. Above we found 
that for the model under consideration there is a range of parameters 
[ h | = - h z = h ,  � 8 9  for which the amplitude fz([3;d)  in the 
asymptotic expansion of the free energy 

F,,(/3 ) = N f  (/3; d) + N | - |/a f | (/3; d) + N '  - Z/d f 2(/3; d) + . . .  

has two points of nonanalyticity when considered as a function of/3. The 
amplitude f2(/3; d) is continuous at one of them (fl,.) and goes to infinity 
at the other (tic). Summarizing Eqs. (3.18) and (3.21), one obtains the 
following asymptotic for f2(/3; d) 

f2(/3; d) = (4j) 3 1 -- + o 1 -- 

as /3--+/3,.. The magnitude to which f2(/3; d) actually "blows up" for the 
finite system at the (now pseudo) critical point /3,. depends on dimension 
and, according to (3.28), is given by 

fx/~c3 + o(x/~) if d = 3  

f~')(fl , .;  d )=  ~(ln n)l/'n2/3c4 + O(n 2/3) if d =  4 (3.29) 

{.nZ/3Cd + o(n "/3) if d~> 5 

4. MAGNETIZATION PROFILE 

The average value of a single spin variable e, is defined by 

( e , )N  = O~, l ..- ~k exp[--  flH,,(I;)] dla,(~) (4.1) 
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After the standard set of transformations one obtains the following formula 
for the average value: 

1 / ~ Vk.,Oq\ 
<Sk>N='-~\~a, ,--~2s/:.NU--'-7-C' ' k~I2,, (4.2) 

where the notation 

<f(z)>:'N=O#V \2-~} --~t --o-io~ dz f (z)eN~:~ (4.3) 

was introduced. It is possible to calculate the sums 

V k . s O t  s Zk(z ) -  L ;~J-~--~. (4.4) 
s E ~ n  i" 2 ~s 

exactly (see Appendix A) with the result 

+ x 'Iz) l 

+ l h ,  + + ' - 
+ x~a(z!l 

x 2 (z )+  1 I (4.5) 

where xl.z(z) is given by (3.10). Since <ek>N is just the average (4.3) of 
Z'k(z), it follows from Eq. (4.5) that <ek>N depends only on ka and hence 
it is sufficient to study just one row, say (1 ..... 1, ka), of the original 
hypercube f2,. To be able to consider the problem in a variety of scales in 
the thermodynamic limit we introduce the notation 

<er>,.~a = lim <el.....i.t,~.+,,,] >u (4.6) 
N ~  

where [na~ , + vn] stands for the integer part of nay + vn, 0 ~< 6 ~< 1, and 
0~< v ~< 1. Note that ~ is a continuous variable unless 6 = 0 (no rescaling), 
and its range can be easily established; for instance, ) ,m( -oo ;oo )  if 
0 < 6 <  1, v r  1, and ),m [0, l l  i f 6 =  1, v=0.  

Unless hi = -h2, �89 1, and f l> fl,. one can apply the saddle 
point method for evaluation of the integral in Eq. (4.2) (possibly after prior 
rescaling of the integration variable) with the result 

< e, > v:a = limoo l ,s,.....,.t,,,~.+ ~,,](z* ) (4.7) 

where z* is the sequence of saddle points. 
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In the high-temperature regime, i.e., for fl<tic,  the sequence z,* 
converges to z*>  d [cf. (3.17)]; hence 

8 k ) 0 : O = ~  i~ g 1, 

h2 k . 
(~k),:0 = ~ X 2 (  z ), 

k = i ,  2 .... 

k = -1 ,  - 2  .... 

(4.8) 

and (ek),.:o=0 for v r  1. Thus, in the high-temperature regime the 
average values decay exponentially fast as we move from the surface into 
the bulk. Equation (4.8) was derived earlier by Abraham and Robert, c41 
who obtained it for the particular case hi =h,  h2=0. 

At the critical point fl = fl,. the location of the saddle point scales with 
n according to Eq. (3.26), and hence one should choose the rescaling 
exponent in Eq. (4.6) as follows: di= �89 for d = 3  and 6=�89 for d>~5; for 
d =  4, however, a rescaled cordinate ? has to be introduced by 

(~ \~d=4~ (4.9) %./,.:~ = lim (e~.....l.t(,,~,,,)6.+,.,,l)N 
N ~ zt2_, 

with r = �89 In these scales one obtains 

h l (q,)0:6 = ~-~ exp [ -),(2(* )1/2] 

/72 )1/2] (e;,) 1:6 = ~-) exp [?(2~* 

~,e [0; or) 

y e ( - ~ ; 0 ]  

(4.10) 

where (* is given by (3.27). Note that for fl = tic unphysical properties of the 
spherical model already start to emerge. These are related to the infinite- 
range interaction (due to the spherical constraint). Indeed, the magnetiza- 
tion profile near the left (right) boundary depends on the magnitude of the 
external field hz(h,) near the right (left) boundary, in spite of the fact that 
it decays very fast (6 < 1 ); see (3.27). 

For h l ~ - - h 2  and fl>flc the location of the saddle point scales as 
z,,((*) = d +  n-2( , ,  where (* is the solution of the equation given in (3.22) 
satisfying ( * >  - �89  2. Hence Eqs. (4.5) and (4.7) in this case yield 

hi - h2 sinh[(l - 2?))(�89 1/2] 
(e~.)O:L- 4J sinh[(�89 '/2] 

h I + h 2 cosh[(1 - 2y)(�89 )1/2] + - -  
4J cosh[(�89 1/2] 

(4.11) 



Spherical Model of a Ferromagnet  267 
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Fig. 2. The magnetization profiles given by Eqs. (4.11 ), (4.12) for h t = 1, h 2 = - �89 J =  1, and 
(a) l-flc/fl=O.02 or (b) 1-flc/fl=0.5. The exchange interaction for these values of J, h I, 
and h 2 is strong enough to make the low-temperature magnetization profile similar to the 
ground-state configuration of the system with hr.2 = 0. 

(~L-f) 0;1 

1.5 

1.0 

0.5 

-0.5 

0:6 _N :8 
0.2 0.4 
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Fig. 3. The magnetization profiles given by Eqs. (4.111, (4.12) for h~ = I, h2= - �89  J=0.3 ,  
and (a) 1 -fl~/fl = 0.2 or (b) 1 -flr = 1. The external boundary conditions for these values 
of J, hz, and h 2 prevent the magnetization profile from looking similar to the ground-state 
configuration of the unperturbed system (with h~. 2 =0)  even at zero temperature. 



268 Patrick 

when (*/> 0, and 

h l - h , _ s i n [ ( 1 - 2 y ) ) ( - ~ . (  ) , .  I/2] 
(e~.)o:l - 4J  s i n [ ( -  �89 

when (*~>0 (see Figs. 2 and 3). 

h, + h,_ cos[(1 - 2y)( - �89 
4 

4J c o s [ ( -  �89 

(4.12) 

Finally, for h~ = - h  2 = h and fl,. <~ fl <~ fl,. the magnetization profile is 
given by 

h sinh[(l - 2y)(�89 j/2] 
(e~.)o:l =2-) sinh[(�89 '/2] ' 7~ [0, 1] (4.13) 

and 

h sin[(1 - 2 y ) ( -  �89 
(e~.)o:l = 2 J  s i n [ ( -  �89 , 7~ [0, 1] (4.14) 

when (* 1> 0 and (* ~< 0, respectively. When fl >/~,. the magnetization profile 
is given by 

(e~.)o:l=~')sin - y  n , ye  [0, 1] (4.15) 

since in the scale d + n - 2 (  the saddle point sticks at the point ( * =  -~n-.l, 
Thus, for h ~ = - h . ,  and f l>fl, ,  the magnetization profile freezes, i.e., 
becomes temperature independent. 

5. DISTRIBUTIONS OF SPINS AND OF SOME M A C R O S C O P I C  
OBSERVABLES 

In this section we derive formulas for distributions of single spin 
variables, of the properly normalized total spin, and of the thermodynamic 
variable 

d 1 

jE~. 

where 6j,.....ja=sgn(jd--�89 ) and the value of 7 will be specified later. The 
distribution for the variable p~, will be calculated only in the case hi = -hz  
since only then does it produce meaningful information. All the distribu- 
tions can be obtained using the method of characteristic functions. In many 
cases we arrive at characteristic functions of the form 

X( t ) = exp( iat --/b2t2) 
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which corresponds, of course, to a Gaussian distribution with mean a and 
variance b. Since the calculations are essentially the same as those in the 
previous sections we present them very briefly. 

For the characteristic function (exp(itek))N of a spin variable ek [cf. 
(4.1)] one obtains after the standard set of transformations 

(exp(itek))N= (exp it t 2 .. (5.2) 

where 

V 2 
k : j  Dk(z)= ~ . , "  

z -  ~,~. j e ~ .  ~ J 

and S~(z) is given by (4.4). As long as one can evaluate the integral on 
the r.h.s, of (5.2) using the saddle point method the limiting ( N ~ )  
characteristic function [in the notation of Eq. (4.6)] is given by 

( e x p ( i t ~ . ) ) , , : ~ = e x p ( i t ( e . ~ ) , , ; a - - ~  (dr),.:a) (5.3) 

where 

(dr),.a--- lim DL, I,[,,%. +,,.](z*) 

-* is the limiting saddle point, and, depending on the model's parameter 
values, (ey),.;6 is given by one of Eqs. (4.8)-(4.12). 

In the high-temperature regime (fl<fl~), (d~.)o:o is given by 

1 ff~ i~ ~ l-cos(2coaka) k a = l , 2  .... (5.4) 
<ak>o;0=~-2~ V . . .  ao~,...aO~z,_XL,coso V 

The same expression is valid for (dk)~:o except that k a now runs on the set 
of negative integers. For all other values of v ; 6 

(d~,),,:,~ = Wa(z*) 

Note that Wa(z*).= 4flJ for fl ~< tic. In the temperature interval fl,. ~< fl <~/~,. 
one just has to substitute z* = d  in the above formulas for (dk),.:6. 

The sequence (dk)o:o steadily increases toward its bulk value Wa(z*) 
as ka--' oo, and the following relations are valid: 

Wa(z*) - ( dk )0:o ~ x~'(z*) 2 z -  a(~ka)~' - u~/2 [x_,(z* ) - x, (z*)] la- 3~/2 
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when z * >  d, that is, in the high-temperature regime, and 

Wa(z*)-  (dk)o:o~aak~ -d (5.5) 

when z*=d ,  i.e.,, for fll>fl,. (ba"-ca means, as usual, that 
lima . . . .  ba/ca = 1). The amplitudes a a depend only on dimension and can 
be calculated exactly; for instance, a 3 ---- 1/(2r0. 

To evaluate the integral in Eq. (5.2) for h~ = -hz  = h, �89 1, and 
fl >/~,. one needs to introduce a new integration variable ( via z = At..... t + 
N-Z(, which yields (exp(itL.))o:l = 1/12, where 

t 2 (d..)o:,]fr +i~- d( f2 . . . .  t2sin2-rt)"~ 
l ' = e x p [ i t ( G > ~  ' r x//~-exp[~ gpJm.: 4r J 

Ir d~ exp(2(flJ, n~) 
1 2 =  ~ 0 - - i ~  U / / ~  "" 

v 

and 
,n~=l  fl' l ( h )  2 

fl 2 2-) (5.6) 

Thus, the characteristic function (exp(itL.))o: ~ for fl>/~c is given by 1251 

_ t 2 )o:,) cos [tm., x/~ sin(rt?)] ( exp( itL. ) ) o: , =exp ( it ( e;. ) o: , - ~  ( d~. 

and the corresponding distribution density is 

1(  2flJ ~ ,/2 
P~.(~) = ~  \~(d~.)o:, ] 

x ~ exp{ 2flJ[e-(h/2J)sinrt( �89 (5.7) 

Similar calculations for the characteristic function of the normalized 
total spin yield 

(exp ( / ' /~n ej)),v = (exp[ital(Z)--�89 (5.8, 

where a~(z) and a2(z) are given by 

1 ~,,, y,,, ( 5 . 9 )  Z 
tPi E O n ~ 

= . . . .  z -  
(5.10) 
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The summations in Eqs. (5.9), (5.10) can be performed (see Appendix A) 
with the results 

N h ' + h 2 F 2 ( 2 + z - d )  x ~ + ' ( z ) -  1 1] 
O ' l ( Z  ) 

n 4J Lxz(---z-)--xl(z---)x'~+q~)+l A N{ 
4 # j ( z - a )  1 

1 
a2(z) + - 

11 

Hence in the high-temperature regime one obtains 

( (  )) { "+",[( lim exp itN '/a-l ~ ~; =exp i t - - ~  
N ~ cr jes N 

2(2 + z - d )  x~+ ' ( z ) -  li} 
n[x2(z) - x n (z)] x~ + '(z) + 

(5.11) 

Let us now consider the characteristic function 

zu(t)--(expli t j~a,~j--i tcr,(z ,*)l lN (5.12) 

of total spin fluctuations around * -* aj(z,, ), where ,,, is given by Eq. (3.t7). 
According to Eq. (5.8), 

Zu(t) = (exp{it[al(z)-aa(z,*)] -�89 (5.13) 

Since we subtracted the mean value from the total spin, we have to 
compensate for the growth of cr2(z) to obtain a nontrivial characteristic 
function in the limit N ~  o0. Thus we introduce the normalization factor 

and study the sequence zu(N-l/2t). The term linear in t in Eq. (5.13) 
is of the order n-lNl/2 after the normalization and hence produces some 
perturbation to the saddle point equation. However, a~ is analytic in a 
small enough neighborhood of the point z* > d and, being suppressed by 
n-IN-1/2 in the saddle point equation, leads only to a "slight" deformation 
of the saddle surface and to a deviation in the saddle point location of the 
order n- IN- i/2. Consequently, 

[ ,2 ] 
lim Zu(t) = exp 8/~J(~ -~ - d) 

N ~ o o  

Thus, for fl<tic the fluctuations of the normalized total spin have a 
standard Gaussian distribution and, as could have been anticipated, the 
magnitude of the total spin's "nonrandom" part is proportional to the 
number of spins on the surface of O,,. 
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At the first critical temperature one needs to rescale the integration 
variable in (5.8) according to Eq. (3.26). Then application of the saddle 
point method yields 

lim (exp[itgfft(n) ~ ej]) 
N ~ ~:~ j E I2 n N = 

where 

exp [it h'q-h2(2)~/21~\-(gj J 

n d- I/2 if d =  3 

ga(n)=~(lnn)l/3n d-2/3 if d = 4  
L H d -  2/3 if d~>5 

and (* is given by Eq. (3.27). 

a s  

(5.14) 

After rescaling (3.26) the characteristic function Zu(t) can be written 

hl+hz( 1 
XN(t)=(exp[ itn-'N[2vd'(n)]'/2 4J \v/~ 

t 2 

-- Nv a '(n ) 8--~]):,(r 

where Vd(n) is given by (3.26) and insignificant correction terms were 
omitted. To obtain a nontrivial limit for gu(t) one has to compensate 
for the growth of the term quadratic in t via the introduction of the 
rescaling factor [N-%d(n)]  'n for t. The term linear in t is analytic in a 
neighborhood of the point (,* and thus produces only a saddle point shift 
of the order n-~N-l/2Vd3/2(F/). Consequently, at the point fl = fl, 

lim Xs([N-%d(n)]l/2t)=exp (5.15) 

where z,,(~*) is the saddle point given by Eqs. (3.26), (3.27). Note that since 
the phase transition at 7",. is not accompanied by spontaneous symmetry 
breaking the distribution of the normalized total spin remains Gaussian at 
the critical point; however, the normalizing factor becomes abnormally 
large. 

In the low-temperature regime for/3,. < fl </~,. one needs to rescale the 
integration variable in Eq.(5.8) via z=d+(n -2. On rescaling one can 
apply the saddle point method, obtaining 

lim (exp(it I ~ %~ =exp  f" h'+h2(2~ '/2 [((_~),/2]} N-~. \ N j~o, J/u ~tt 4J \~*J tanh 

(5.16) 
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where one has to replace the r.h.s, by its analytic continuation (from the 
positive semiaxes) for - �89  < ( ,  ~<0. 

One can consider the characteristic function Zu(t) for tic< fl < ~,. in 
much the same way as was done for f l= tic- The proper rescaling factor 
in this case is N -~/2-~/d. Thus one needs to consider the sequence 
xu(N-~/2-'/dt). Taking into account the perturbation produced by the 
linear term in t, one concludes that the deviation of the saddle point is 
given by 

s (~,,) {- o(N- l/2n) ~ , ( t )=~ ,* - i t nN -~/2 (hl+h2) ' * 
4JT"(~*) 

where s(~)= (2/~) '/2 tanh[(~/2) '/2] and ~(~) was introduced in Eq. (3.20). 
Contrary to the case fl ~< fl,., the deviation of the saddle point makes a 
nonvanishing contribution to the variance of total spin fluctuations. 
Indeed, having applied the saddle point method for the evaluation of 
zu(N-~/2-I/dl) ' one arrives at 

( t z {  (__~) t/2 F /~ , , , / 27 )  
lim~: ZN(N-'/2-'/at)=exp 4flJ~* 1 -  tanhL/T) ]j, 

\ ~ ]  2r (~*) J (5.17) 

and the same analytic continuation as in Eq. (5.16) has to be done for 
negative values of (*. 

At the second critical point fl =/~,., which is accompanied by symmetry 
breaking, one has a pretty interesting situation. For this temperature one 
needs to rescale the integration variable in Eq. (5.8) according to 

z = d -  �89 ~N-l/a- 1/2 (5.18) 

which yields (as N--* ~ )  

(ox,(. z e l  
\ j 6 U d  n I N  12 

where 

Ir176 1 I 2 ~ tZNl+2/a[Nl/2-1/a+O(1)]} (5.19) 
I] = o-,~ "v~'exp + 0(1 ) -- #jrc2---------- ~ 

and 

f~0+,~- 1 l-flh2~ 2 1 I2= r ~/r +~ (5.20) 
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One sees from Eq. (5.19) that one needs to choose the normalizing factor 
N-3/4-l/t2d) for the total spin in order that its limiting (as N ~ oo) distribu- 
tion be a nontrivial one. Note that all points of nonanalyticity of the 'o' 
terms in Eqs. (5.19), (5.20) move to infinity along the negative semiaxis as 
N ~  oo. Indeed, these terms originate in integrals of the type (3.4) and all 
singularities of such integrals, except for the branch point corresponding to 
(z-21.....i) ~/z, move to z=oo  along the negative semiaxis under the 
rescaling (5.18). Obviously (z-21,...,~) j/2 is not included in the 'o' terms. 
Hence closing the contour around a keyhole on the negative semiaxis 
contains no singularities and our original contour can be replaced by 
the one over the negative semiaxis. On integrating and performing the 
inverse Fourier transform of the characteristic function, one arrives at the 
distribution function 

Pr IN-3/4-t/12a~j~o ~j~ x] 

2 (2flcJ31t6~ 1/4 f-~ 2/~, ,J3/'C6 4~ 
- F(1/4) \ hZ j dy exp ( ~ y )  

Thus, at the symmetry-breaking critical point the presence of external 
boundary conditions "washes out" the dependence on dimension of the 
(properly normalized) total spin distribution, which the spherical model 
without external b.c. enjoys. ~221 The normalization factor N -3/4-~/12a), 
however, possesses dependence on dimension, having in the infinite- 
dimension limit the mean field value N-3/4. Illl 

Above the second critical point, that is, for fl >/~,., the picture is that 
typical for ferromagnets (without any external perturbations) in the 
low-temperature regime. The characteristic function is again a ratio of two 
integrals 

which are given by 

exp it ~, ~i =j--~ 

I ~0+iz 1 (2~J~ln~ -- t2N2"~ 

i 
r i~ 1 ., 
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where m~ is given by (5.6) and irrelevant (as N ~  ~ )  terms are omitted [cf. 
(5.19) and (5.20)-1. Consequently, 

lira (exp(/tN-' ~ ej/~ =cos(2tm'x/~] 
N ~ ~r~ \ j E ~Qn / I N  \ 7"C / I  

Thus, for fl > ~c the random variable ~magnetization) N-~ Y'.j~a, ej is a 
dichotomic one taking the values _+ 2 ~/2m.,./Tt with equal probabilities. 

One can repeat the above analysis to obtain the characteristic function 
X;,(t) of the random variable 

a I 
p,,--,lim<~, ~ E 6j~j 

However, calculations in this case are technically more complicated; thus 
we give a bit more detail than in the cases already considered. 

We start from the expression 

, ; ;  [ ] X~,"'(t)=-~ -- �9 /4,(de)exp i t N - ; ' ~  ~jej-~H,,(e) 
4 ~ 

- -3C" --Or._ I--  j e .~ln " 

After diagonalization of the quadratic part of the Hamiltonian one obtains 

Xl"'(t)=~--~u _ ... #,,(dy)exp 2.,.y;+ ~ ([3~.,.+itN rL,.)y s 
n s E -Qn 

where coefficients gs are given by 

x~ = 52 6.jv~,:~. {5.21) 
i E ~ n  

Performing the summation in Eq. (5.21) (which needs essentially only 
patience and some care), one obtains 

I 0 

d -  I - ~ S d  

1-I a , ,  ) Z ' = \ n +  lJ  ,,=, .... - t a n  4(n-~ 1 

l . rtsa 
[ c o t ~  

if sais odd 

if sais a multiple of 4 

otherwise 

As usual, integration over the variables {3,j}./~a. can be done after 
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substitution of the integral representation of the delta function into/a,,(dy); 
this yields 

F itN-'~ S~'l(z) S~2'(z) (5.22) 
Xt~;'l(t) = exp L 4J " 8flJ :.u 

where 

and 

S I ~ % ~ _  ~ ajXj n x ~ - -  z . ,  - - - ~  
j E ~, ,  Z - -  ~,~j  

.y 

s,,?,lz)= Y'. z; 

Using the techniques of Appendix A, one obtains the following expressions 
for the sums Sl,11(z) and S~,,Zl(z): 

I (  2 \ 1/2 X'~+ l(z) "F 1 
S l , " ( z ) = 2 n - ' U h  1 + z _ ~ )  x,_-~ i (z--~_ 1 

1 2 

4 x'~/'-(z) ] 
1 l _ x l ( z ) x . ~ + l ( z ) _  1 

n +  1 x z ( z ) +  1 
S~21(z.) = N(1 +n-')~--,--n-lNx2(z)--xl(z)-~ 2 ,- -- X "n+ l t T )  1 

x 2 ( . ) + a  + n _ l  N 2 S"  1 -"+J - 
S:~Iz)-Y,~Iz)o=y+_, 1 + al-_~Iz- d )+  111/2 .~+ '{z) -a  

where .G:z(Z) are given by 

1 
.~1:2(z) = ~  [ ( z -  d +  2) 1/-' -T- ( z -  d) 'p-] 

The above expressions were derived for the case of even n/2. For others 
values of n similar expressions can be obtained. 

In the high-temperature regime, applying the saddle point method for 
the evaluation of the integral in Eq. (5.22), one obtains 

XI_ l/a(t) - l i m  X ~  ,/a(t) = exp [ 2 J  1 + z* - dJ - 1 

which, as could have been expected, coincides with (5.11) for h, = h2 = h. 
One can calculate the characteristic function 

( I ' l) ~,,(t) = expit ~ 6j~j- -~Sl , ," (z ,*(~))  
j~.O. N 
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for fluctuations of p~, in much the same way as was done for the total spin. 
In the low-temperature regime (that is, when z* >  d) one obtains 

lim ~,(N_l/2t)=exp( t 2 1 ) 
u ~  8f lJz*-d 

As could have been expected, the distribution of fluctuations of Pl/2 is the 
same as that for the total spin normalizes by N-~/2 

At the first critical point one needs to rescale the integration variable 
in Eq. (5.22) according to Eq. (3.26) prior to applying the saddle point 
method. As functions of thed rescaled variable ( the leading terms of the 
asymptotic expansions of S~ll(z,,(~)) and Sl,Zl(z,,(~)) are given by 

2Nh l /2f  N//~ when d = 3  
(~ )  ~(nlnr/)  1/3 when d = 4  

S,,III-(,~,,(~)) ~ n {nl/3 when d>~ 5 

In  when d =  3 
N n)2/3 SI,2~(z,(~))~--7 (nln when d = 4  

~n 2/3 when d>_-5 

For the characteristic function X(t) of the random variable 

1 

ga(n) jEa, 

where the normalizing factor ga(n) is given by Eq. (5.14), application of the 
saddle point method yields 

X(t) =exp  it j(2~,)1/2. 

where the saddle point (* is given by Eq. (3.27). 
The proper normalization factor for fluctuations of p~, at the critical 

point fl=fl,, is [N-~Vd(n)] ~/2, and is the same as for the total spin. For the 
characteristic function ~,,([N-Ivd(n)] 1/2t) one obtains 

lim ~,,([N-lVd(n)]l/2t)=exp( t~_~) 
N ~  8 

where Vd(n ) is given by (3.26). Thus, at the first critical point, fluctuations 
of the random variable pr remain Gaussian, as in the high-temperature 
regime; however, the normalizing factor becomes significantly different 
from N-~/2, the one relevant to the sum of independent random variables. 

822/75/1-2-18 
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For fl,.<fl</~,, one needs to rescale the integration variable in 
Eq. (5.22) via z=d+n-2(. After the rescaling the leading terms of the 
asymptotic expansions of S~,,'l(d+n-2~) and 121 S,, (d+n "-~) are given by 

Sl,"(d+n-2~) 2Nh(~)i/2tanhI~(~) '/2] = NsI(~) 

Sl~l(d + n- 2~)~ Nn2~-' { l - 2 (~) 'i2 tanh [~ (~) '/2]} - Nn2s2(~) 

for ( > 0 ,  and one has to perform an analytic continuation to obtain 
expressions for sL2(( ) on the interval -n2/2  < (~<0. 

Application of the saddle point method yields 

Fit ~. q X'(')=exp L s'Ic )_l 
where (* is the solution of Eq. (3.22). 

Let us consider now the characteristic function ~,,(t) for fluctuation of 
Pr" One needs to introduce for the variable t the rescaling factor n-IN-~/2 
in order to compensate the growth of Sl~l(d+ n-2(). One can apply then 
the saddle point method in much the same way as was done for the total 
spin fluctuations; cf. (5.17). On applying it, one arrives at 

,2 _]:.] 
lim ~,,(N-ii2-udt)=exp -- s,((*)+t 2 

u--~_ 8 ~  - 2r"(~*) J 

Let us note now that the Taylor expansions of the functions st,2(() 
1 "~ and r"(() at the point ( =  -_~x- are given by 

4 h + 2 - ~  2h ( ( + ~ r t 2 )  + 0 (~ + 1 2 
--U- 7 

f l h 2 r l  rr2--6 ( 1 )  ( 1 , ,  2 ] 
4n 4 ( + ~ x 2  + 0  ~+~Tt- )  J 

Hence, after further rescalings of the integration variable, which are 
necessary both at the second critical point and for fl > fl,., the main terms 
of the asymptotic expansions of I~l . ~ c21 _. ~ S,, (z,, (()) and become s,, (.,, (~)) 
independent of (" (the new integration variable). Consequently, for fl >/fl,., 

Xl(t) =exp \x J] (5.23) 
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and 

E ,2(__ ~,,(N- '/2- '/at}=ex p -- 4rt~ rt lim 
N ~ zc, 4 ~  

It follows from (5.23) that the mean value of the order parameter P2 does 
not depend on the temperature in the thermodynamic limit for fl > [3,.. 

6. D I S C U S S I O N  A N D  C O N C L U D I N G  R E M A R K S  

First of all we would like to explain why we considered the internal 
b.c. (2.2) instead of the most often considered completely periodic b.c., in 
spite of the fact that the latter are the most convenient from the computa- 
tional point of view. The answer is very simple: the spherical model with 
completely periodic internal b.c. possesses unphysical (for a ferromagnet) 
properties. Indeed, consider, for instance, the spherical model with com- 
pletely periodic internal b.c. and the external b.c., 

f i  I if id= 1 n 
hil,i2,...,ia = 2 if ia='~+ 1 

otherwise 

(6.1) 

In the completely periodic case these external b.c. are a natural analog of 
Eq. (2.3). For this model, below the critical temperature 7",. = fl,7 t spins at 
sites 

n _ ld } kE lel2,:ld<~nm, orn--ld<~nl/3, or ~ <~n j/3 

take abnormally large values of the order n~/3, while most of the remaining 
spins are practically zero. To demonstrate this, let us notice that the 
eigenvectors and eigenvalues of the interaction matrix 6"1"1 are given by 

{P~... N-'/2 ~ [ 2 r t ( j , - 1 ) ( m , - 1 )  
9 j  = . . . .  = c o s  

' k = l  / I  

+ sin 2 r t ( jk - - l ) (m, - -1 ! ]}  
/'/ m E .On 

d 2n(j ,  - 1 ) 
2 Z cos 

k = l  rl 

(6.2) 

(6.3) 
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when the internal b.c. are totally periodic. For the average values of the 
spin variables, by analogy with (4.2), one obtains 

<~k>N=~ ~Q.Z__�89 u kmQ, (6.4) 

where 

d - I  

l-I 6,,,:, /'/ 

and <. >=.N is defined by (4.3), where ~N(Z) must be modified to take into 
account (6.2), (6.3). Performing the summation in (6.4), one obtains 

-~k(z) = 2 
[x2(x) - xl(z)]  Exg(z) - 1 ] 

(h,(x~ - , ( z ) + x ~ - k + l ( z ) ) + l ,  ~, , /2+k-~, .~_ ~,/2-k+1, ~ ~21-~-2  I z-!  T " 2  ~.Z)! 

1 if k =  1, 2 ..... n/2 
k -  I n - k +  1 h [ . . k -  I - - n / 2 [ ~ . .  L y ( 3 / 2 J n - k  + I l m ~  x ht(x,_ ( z ) + x 2  (z))+,.,_~..2 ~ - . . -~  ~ . ,  

k if k = n / 2 + l  ..... n 

For all/3 > fl,. and h~, h2 (we suppose that at least one of hi, h2 differs from 
zero) the natural scale for the integration variable in (6.4) is introduced by 
the change of variables z = z , ( ( ) =  d+ n-Z/3( (it can be established by an 
examination of the field-induced term corresponding to ~,). 

We are now in a position to analyze the averages <ek>s for k in the 
strip k e A ~  = {leg2,,: 1 <~ld<~n/4 }. The average of the spins from the rest 
of 12,, can be analyzed in the same way. Since for large N the main 
contribution to the integral in Eq. (6.4) comes from a small vicinity of the 
saddle point (*, one can rewrite <ek>N (for kEA~),  omitting irrelevant 
terms, as 

n ~nh 
<~k>N 4J(2~.) j /2[ l+n-U3(2~*)l /2]  -k~ 

Hence, as N ~ or, 

nl/3hl {1 if ka=o(n  '/3) 
(~ 'k )U'~4J( '~ i l /Z  exp[--n~'-'/3~(2~*) '/2] if ka.-.om ~', ~ < y < l  

Thus, the completely periodic spherical model with the external b.c. (6.1) 
possesses an instability similar to that found by Lieb and Thompson (z~ 
and Barber et alJ 9~ The internal b.c. (2.2) create a repulsion from the 
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edges of the hypercube corresponding to j d  = 1 and n, preventing the 
anomalous "condensation." Being evidently unphysical for a ferromagnet, 
this phenomenon seems to be in agreement with physical intuition if one 
thinks of the spherical model as describing a (binary) liquid with very weak 
surface tension. Indeed, if one imagines a liquid in a vessel, in the absence 
of gravity, then it is reasonable to expect that all of the liquid gathers on 
the walls of the x/essei due to wetting. 

A phase diagram of the model (2.1)-(2.5) for h, = -h_, = h is shown in 
Fig. 4. Qualitatively it is the same as that obtained in ref. 23, where the 
spherical model with a perturbation by an infinitesimal inhomogeneous 
external field--in the spirit of the quasiaverages approach--was  considered. 
Phase I is the ordinary paramagnetic phase. Phase II is characterized by a 
nonzero value of the order parameter p, [see (5.1)] and zero value of the 
magnetization. Distributions of the single spin variables in phase II are 
Gaussian. The phase transition I ~ II is characterized by critical indices 
typical for the ferromagnetic phase transition in the spherical model 
without any external perturbation. The distribution of the normalized total 
spin, however, remains Gaussian (for h:/:0), which suggests that the 
presence of the external b.c. weakens correlations in the model at /3 =/3c- 
Phase III  is characterized by spontaneous symmetry breaking, since the 
magnetization takes values _m,. with equal probabilities, and the order 
parameter p, is "frozen" at a nonzero value. The distribution densities of 

II I 

o 

II 

Fig. 4. The phase diagram of the model for h~=-h,=h.  Phase I is the ordinary 
paramagnetic phase, phase II is a phase where the external b.c. prevent "spontaneous 
symmetry breaking," and in phase III "spontaneous symmetry breaking" takes place, making 
the phase similar to a ferromagnetic phase. 
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the single spin variables in this phase are linear combinations of Gaussian 
densities. The phase transition II ~ III is characterized by the mean field 
critical indices. The distribution of the normalized total spin becomes non- 
Gaussian, which is typical for critical points corresponding to an onset of 
spontaneous magnetization. The point fl--fl,, is called a critical point since 
it is a point of nonanalyticity of the free energy per site f(fl). In spite of the 
fact that f(fl) is analytic at fl=fl,, it is reasonable to call it a critical point 
also, since fl,. is a point of nonanalyticity of the macroscopic variables: 
magnetization and P l. 

As follows from the explicit formula for the single spin distribution 
[see Eq.(5.7)], < e ] ) # l  (generally speaking) in the low-temperature 
regime. Hence, the behavior of the spherical model and the generalized 
spherical modeP 17~ (which is the large-n limit of the n-vector models) is 
different in this regime. It is not excluded that the difference is qualitative, 
that is, the generalized spherical model possibly does not have the second 
critical temperature. It would be very interesting to clarify this question. 

In conclusion, let us say a few words about limiting Gibbs states for 
the model. We are in a similar situation to Abraham and Roberd 4~ in that 
we did not find any translation-variant (bulk) Gibbs states irrespective of 
how high the dimensionality is. The existence of translation-variant surface 
Gibbs states for fl<fl,, due to the presence of the external b.c. is not 
surprising; see the characteristic function of a single spin <exp(ite,))o:o 
given by (5.3). What was unexpected (by the author) is that such Gibbs 
states still exist for fl > fl,.. Despite the average values of the single spin 
variables being translationaly invariant (on the microscopic scale, which is 
the only relevant scale for the Gibbs states) at the surface, their variances 
are not; see Eqs. (5.4), (5.5). 

Concerning the translation-invariant bulk Gibbs states, we would like 
to stress the existence [for �89 1 and fl > fl,.] of the two-parameter 
family of mixed states with single spin distribution densities [cf. (5.7)], 

p(e)=l( fl--~-~'/2 ~ e x p l  fl (e-K-ap)21 (6.5) 
2 \2nil,.,/ ,= +i - 

where KE [-h/2Y;h/2Y] and /~e E0; x/~nL],  with m,. given by (5.6). The 
existence of this family suggests the existence of the two-parameter family 
of pure Gibbs states with the single spin distribution 

with the same range for ~ and ~ [-x/~m., . ;  x/~m,.]. 
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APPENDIX  A. 

It is a common practice to replace sums of the type 

l"~'f( 2nk~ 
- -  C O S  

ink= o \ m /  

by the integrals 

A " C O N T O U R  S U M M A T I O N "  T E C H N I Q U E  

(A.1) 

-- f c o s - -  --, 2--~ Io f ( cos co ) dco 
m k =  0 

as m ~ ~ for sufficiently regular functions f ( . ) ;  see, e.g., refs. I0 and 4. 
Sometimes this is sufficient for the problem under consideration, such as 
when Berlin and Kac studied the homogeneous ferromagnetic spherical 
model. Sometimes, however, one needs to know how fast the sum (A.1) 
converges to the integral (A.2). Then a technique of one or another type, 
quite often sophisticated, is used to estimate the rate of convergence; see, 
e.g., refs. 13 and 8. 

It turns out that a large class of sums of the type (A.1) can be 
calculated exactly. The reason for this simplification is in part the same 
as makes possible the explicit calculation of the integrals (A.2) for a wide 
range of analytic functions f ( - ) .  As may be found in any textbook on 
functions of a complex variable, one obtains 

f ( cos  co) dco = ao (A.3) 

if the expansion of the function f ( e  i'o) = f ( c o s  o9) in the Laurent series is 
given by f(d'~)=Z~,~= _~ a,  ei ..... . Thus the main ingredients for the validity 
of Eq. (A.3) are the ability to expand an analytic function in a uniformly 
convergent Laurent series and the fact that the integral of e ;"'~ over the 
interval [0 ;2h i  equals zero unless n = 0 .  If one considers the sum (A.1) 
instead of the integral (A.2), one of course still enjoys the ability to expand 
the function f ( - ) - i n  the Laurent series and the following identity for the 
sums of exponentials is valid: 

l " ~ e x p ( i _ ~ ) = { 1 0  if r=lm,  I ~ Z  
n~ k = o otherwise (A.4) 

when one needs to investigate the former for large m, since 

J_ j2~ f (cos  to) d~ (A.2) 
2n o 
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Thus, the analog of (A.3) is 

f l c o s  = a,., (A.5) 
m k=o \ /= -~_ 

If one can sum up the infinite series in (A.5), one obtains an explicit expres- 
sion for the sum under consideration The point is that one can do this for 
a large class of functions f ( . )  which includes all rational functions and 
their logarithms. 

We consider a somewhat more general class of sums than (A.1), 
namely 

1 "  ' ( n ( 2 k + ) ` ! )  ] .... ' ~ /  i r t (2k+)`) )  
- - k ~ o f  COS = m  ~=of~  exp 
m = i n  k m 

(A.6) 

where )` is an arbitrary real number. Suppose that f ( z ) = P d z ) / P 2 ( z ) ,  
where Pi(z ) ,  i =  1, 2, are two polynomials. Then one can expand l / P 2 ( z )  in 
a sum of simple fractions, so that 

" ~ bqcr2 q " ~ bqc,zq d~,-l l 
)7(z) = ,  ~ (z -- x , ) "  ~ (sT--~ii! dXra'-777~>-" z - Xr (A.7) 

= 1 q =  I r =  1 q =  - - I  

(we require, for the sake of less ambiguity, that all Xr~-0). This in fact 
solves the problem of summation in (A.6), since 

1 .... I exp[in(2k + ) , ) q /m]  

a,,,:q:;.(x) -- m k~O= X - -  exp[irt(2k + )`)/m] 

ex p( irC)f o ) x -  l -- fom + q 

i - exp(irt)`) x .... 
(A.8) 

where fo is an integer satisfying ( fo  - 1 ) m  < q <~fom. From (A.6)-(A.8) one 
concludes that 

.... ' /  ) ~ ~ ( d,',-' l y.f cos t2k+)`) _ _ b . c ,  
" l  k = O  k " /  : r = l  = _ S r Z 1 ) !  d.~r~7.st-I {~t)l;q; ; . (Xr)  

(A.9) 

for any m. 
To obtain (A.8) let us suppose for a moment  that [xl > 1; then, using 

the formula for the sum of a geometrical series, we obtain 
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a,,,~q:,.(X)= mxS+ l exp i~(2 2) ( q + s )  
s=O k=O 

__ __ ~ 1 { 0  calf;" if q + s = f m ,  f e Z  
.~ = o mxS + ~ otherwise 

ei~;dOx - 1 - f o  m + q 

- 1 - - e i " ; x  .... (A.10) 

Since tr,,,zq:~(x) and the final expression in Eq. (A.10) are analytic functions 
in the whole complex plane of the variable x except for a few poles, the 
analytic continuation from Ix[ > 1 yields (A.8) for all points of analyticity. 

The situation in the case .f(z)-= l n [ P l ( z ) / P 2 ( z )  ] is even simpler than 
for a rational function. After factorization of the polynomials one has 

/ 

? ( Z ) =  ~ .  S r l n ( l - - X r Z ) " ~ C  ( A . 1 1 )  
r = l  

where ln(-) is the principal branch of the logarithm, i.e., there is a branch 
cut along the negative semiaxes and ln(1)=0.  Thus, it is sufficient to 
calculate the sum 

6"(x) = m ~--o In - x  k m (A.12) 

Suppose, again, for a moment that lxl < 1; then expanding the logarithm 
in the Taylor series and using Eq. (A.4), one obtains 

1 ~L ~, .x "q exp[in(2k +2)q /m]  
6,,,(x) / ,  

m k = l  q=~ q 

= -- ~ ( x " ' ) t e x p ( i r t 2 f ) = m - '  ln{1 --exp(irc2)x"} (A.13) 
./.= ~ frn 

Since 6,,,(x) given by (A.12) and m - t  l n ( 1 - e ' : x " )  are analytic functions 
throughout the complex plane (of the variable x) except for a branch cut, 
the analytic continuation allows one to conclude that Eq. (A.13) is valid at 
all points of analyticity. Thus in the case 

f ( z )  = In P'  (z----2 
P2(z)  

one obtains 

.... t ~(2k + 2 l 1 in:. ,,, 
-- In( - e  x r ) f cos = c + m -  E s,. 

k=O m r=l 
(A.14) 
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Let us now demonstrate the application of formulas (A.9) and (A.14). 
According to Eq. (3.8), the field-induced term contains the sum 

t,,(z)= ~ [h~ +(-1)~+lh2]2sin2[ns/(n+ l)] (A.15) 
s=l z - d +  1-cos[Tts/(n+ 1)] 

Using elementary transformations, one can rewrite this as 

(hi +/12) 2 ~ 1 - cos[2n(2s+ 1)/(n+ 1)] 
t,,(z) 

4 /-" - - d +  1 -cos [ r t (2s+  1)/(n+ 1)] 
. 3 = 0  ~ 

1 x 2  n 
(hi-_n,_1 ~ 1 - cos[4zs / (n+ 1)] (A.16) 

+ 4 s=o z - d +  1 -cos[2ns / (n+ 1)] 

Comparing Eq. (A.16) with Eq. (A.9), one sees that the first (second) sum 
in Eq. (A.16) corresponds to 2 =  1 (2=0) ,  m = n +  1 in Eq. (A.9). Noting 
the identity 

1 2 r x , (z )  x , (z )  .] (A.17) 
z - d +  1 - cos ~b - x2(z) - x, (z) Lx2(z -) - e i~ + e 'r - x,(z)_l 

where xi.2(z) is given by (3.10), and comparing the sums in Eq. (A.16) with 
Eq. (A.7), one obtains the following values for the parameters in Eq. (A.9): 
v /=2 ;  sj.~ 1; XI~=XI,(Z); Cl.2=2Xl.ff(X2. l - -Xl , ) ;  b + ~ -  I 
b+i =0, bo = I. Thus after some algebra Eq. (A.9) yields 

[(hi+h2)-"x2 .... ' . . . . .  ~1 
t , , ( z )_(n+ l)x,_(z) t , J + l  x~- l ( z )  - 

2 x--~ '7" '(z---] + 1 + (h, - /72 )  2 - x~+i(z) 

which yields Eq. (3.9) for the field-induced term. All the other summations 
in the paper involving rational functions f ( . )  can be carried out similarly. 

As an application of the formula (A.14), let us calculate the sum 

/ = 1  

Comparing this expression with Eq. (A.11), one identifies with the help of 
the identity 

I . = - c o s ~ = s x + ( = ) [ 1 - x  (z)e-i*][1-.x '_(=)e i*] 

where x •  2 -  1) 1/2, the values of the coefficients in Eq. (A.11): 
/=2 ,  2=0 ,  c = l n  i , _ 5.~+(_), sl._,= 1, Xl.2=x (z). Hence, Eq. (A.14) yields 

' " I -  2 j_ ] , 
n,~j.= In z - c o s  n 1) = l n ~ x + ( z ) + 2 n  - I l n [ l - x ' _ ( z ) ]  (A.18) 
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APPENDIX B. A S Y M P T O T I C  BEHAVIOR OF SOME 
SEQUENCES OF S U M S  

In this appendix we study the rate of convergence of the sequences of 
( n )  ~ sums L a (-~) and W~')(z), given by Eqs. (3.6) and (3.13), respectively, 

toward their limits. Although these problems have been studied earlier (see, 
e.g., refs. 8 and 13), we would like to present a derivation of the asymptot ic  
formulas for the sums to demonstra te  the application of the summat ion  
technique described in Appendix A. In doing this we will be able to refine 
previously known results and to derive them, in our opinion, with 
considerably less labor  than in refs. 8 and 13. 

We study first the sequence 

(,,)_ I ~ I (B.I 
w,, (_~)=~j ~189 

where 2j-2j,.....j~ is given by (2.8). One can perform the summat ion  over j ,  
in (B.1) by using the identity 

E 21 1 2n 1 + 
j ,=,  z - - c o s [ 2 ~ z ( j , -  l ) /n ]  - x + ( z ) - x _ ( z )  x'+(z)-- 1 (B.2) 

where x+_(z)= z + (z 2 -  1) 1/2, which can be obtained using the technique of 
Appendix A. Summat ion  over j ,  yields 

11 

FIe d ~x,) ~ j ,  J/ x 
2 H (d) + _ ~ A ,  (z) (B.3) 

+(z,) -x_(z,)  N 

where 

4 l 
a(/)(z)=j~j x+(~,)-x (z,)x"+(z,)- 1 

and 

,1- 1 2rc(j k - 1 ) 7tja 
z i = z - ~ cos cos - -  (B.4) 

k=2 n n +  1 

Now it is convenient to rewrite (B.3) using the ["converse" to (B.2)] 
identity 

2 1 r e" do9 

k x + ( z ) - x  (z) 2rt z - c o s t n  
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which can be obtained for z >  I from (B.2) if one divides by n and passes 
to the limit n ~ ~ .  This yields 

W~,i(z ) n 1 ~2,,. doo, +~Ain ~a)(z) 
=Uj Y~j ~Jo ~,-cos o,, �9 = ,.,., �9 

and now one can perform the summation over Jz under the sign of the 
integral. Performing summations over J2 ..... Jd- ~, one obtains 

n a- '  l I~ '< I~"  dt-~176 
r l r  [ / i J / ~  d ~  . . . 
Wd t ' '  = ~N--'j :1 (2rt) d- ' ~- -- Zkd--l: ' COS OOk --cos[nju/(n+ 1)] 

+ N k : l  r tkzJ  ~kal('7) 

where for k = 1 ..... d -  1 

.,<,<z,= ' I? I? A+ .,Ja ( 2 r ~ T k - !  " ' "  X t + ( Z k ) - - I  ( Z k 2 - - 1 ) l / 2  

and 

k -  , d -  1 2 X  rtja 
z , = z - ~ ,  cosoJ , . -  ~ c o s - - ( j , . - 1 ) - c o s - -  (B.5) 

,.=1 ,.=k+l n n + l  

The remaining summation over Jd can be performed using the identity 

j : ,  z - cos[rq/(n + 1 )] 
21,,+,, E 2 ]  

- x  +(z ) -  x_(z)  1 + "-2("+ I ) ( z ) -  1 

1/" 1 1 "~ 

which can also be obtained using the technique of Appendix A. On 
summing, one obtains 

w~')(z)= w , ~ ( z ) -  ~_n-'[W,~ , ( z -  1)+ W<~_,(z + 1)-2W~(z)] 
d 

+ N - '  ~ nkA~kdi(z ) (B.6) 
k = l  

where 

1) 1 f2~ f2~ dcol ...alcoa_ i 2 A(dW'~--d , - , - -  I + n  --(2~)d-' Jo ' "Jo x2+~"+iT('~-~u)-~-l--- (zs-" 1) ',2 
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and 

d - I  

Zd ~-Z-  ~ COSO)v 
�9 . , =  | 

Our strategy now is to show that the term N - '  Zd=,nkA~d)(z) is small, 
and making use of Eq. (B.6), obtain the asymptotic expansion for W~'~(z) 
from that for W~(z) which can be found in the paper by Barber and 
Fisher. 181 For our purposes the following will be sufficient: 

i ., 
i, . = 4  , . . 7 ,  

[ , ( z - d )  Wd(d)--I -O(z-d)  3/2 if d~>5 

Note that the Watson function Wd(Z) which we use differs slightly from the 
one Wb/(z) used by Barber and Fisher, but coincides with that of Berlin 
and Kac. ~~ The relation between these two functions is Wd(Z)= 2 W~/(2z). 

If z is fixed (does not scale with n) and z>d  one has X+(Zk)>>, 
x+( z - -d+l )> l  and hence A~d~(z)=O(exp[--nc(z)]) with c(z) strictly 
positive (for z > d). Thus for any given z > d the contribution produced by 
the term z d =  l nkA(kdl(Z) in the asymptotic expansion of ,,Wl"ld is weaker 
than any power of n-~ and can be neglected. 

If z scales with n as z=z , ( ( )=d+n P( with 0 < p < 2  the same 
conclusion is true, since for this scaling of z one has x~+(z,,(~))= 
O(exp[n | -P/2(2()|/2]) and hence 

Ala~(d+(n ' ) =  O(exp[ - -n  l -p /zc | ( ( ) ] )  (B.8) 

with c |(()  strictly positive and increasing for ( > 0 .  Thus the asymptotic 
expansion of WCa"~(d+ (n -p) follows from Eqs. (B.6) and (B.7). 

Now suppose p = 2, z = z,,(() = d +  n-'-(.  Note that we are interested in 
the asymptotic expansion of Wea"l(z) for z > 2|.....1 = d -  1 + cos[~/(n + I )] 
and hence for p = 2  the relevant values of ( are those in the range 
( _  Ut~ 2., oo). For ~ > 0 one can obtain the following estimates: 

4tkd)(d+(n-2)=O(n-k+2), k= 1 ..... d 

and hence 

d 

N -l y' nkA~al(z)=O(n -a+z) (B.9) 
k = l  
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Taking into account Eqs. (B.6), (B.7), and (B.9), one arrives at 

W~/')(d + n -2r = Wa(d ) + O(n -i) (B.10) 

for any given r > 0 and d>~ 3. 
If r < 0 the function Wa(d+ Cn 2) is not well defined and we cannot 

use the above technique. Nevertheless, to obtain the asymptotic expansion 
for r < 0  let us rewrite W(")(d+n-2~) as 

W(u")(d+ n-2r = w,,(r r + WJ")(d+ n-2r 

where 

)%(r r W(,,)(d+n 2r W~[,)(d+n-2~o) 

and r > 0. Using the Taylor formula, one obtains 

_<~o-r Iw,,(r ~o)l -~ ----~ W(a")'(d+n-2r 

The sum 

1 
W(")'(d+n-2r ~a 

J ,(d+n-2r 

behave as 

, fO(n)  if d =  3 

W~")'(d+n--~)=~O(Inn) if d = 4  

LO(1) if d~>5 

Hence, using the expansion (B.10) for W(a")(d+ rt-2r one obtains 

(B.ll) 

f O(n I) if d = 3  

W~['l(d+n 2r if d = 4  

(.O(n -2) if d~>5 

(B.12) 

When z scales as z=z,,(r189162 -p and p > 2  we can 
proceed as follows. In the scale z,,(r d +  Cn-2 the contribution produced 
by the term of W(")(z) corresponding to the largest eigenvalue 2~.....~ is of 
O(n2N - 1). Hence, the expansion (B.12) is valid for the sequience of sums 

1 
ff')7)(d+ n-2r - ~ d + n - 2 r  

. jE f2n\( I,..., 1 ) 
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as well (in this paper we consider only the case d~> 3). Since in the scales 
z,,(~) = d - ~ n - n - 2 +  ~n-t' p > 2, the distance from z,,(~) to the next largest 
eigenvalue is still of the order n -2, Eq. (B.12) is still valid for ff')[')(z,,(~)) 
in those scales. Thus 

ur-n - + ~n-") = Wa(d) + O(n-)) (B.13) 

for all p > 2. 
We can study the sequence 

L ( " ) ' - ' - I  V' ( ~ ) (B.14) 
j e t ' 2  n 

where 2j is given by (2.8), in much the same way as we did for W~")(z). 
One can perform the summation over j) in (B.14) using the identity (A.18). 
Using next the "converse" identity 

I fz" d 1 
2-~ Jo ogln(z -cosog)=ln~x+(z )  

which is the limiting (n--* ~ )  form of (A.18) for z >  1, one obtains 

(,,) tl _ I f z n  2 
L a (z )=-~j ,~ j~-~  Jo d~o, in(z)-cosco))+--Nj,.:...:ja~ I n [ 1 - x "  (z))] 

where z) is given by Eq. (B.4). Performing the summation over J2 ..... Ja-) 
along similar lines, one arrives at 

n"- )~c,;/)(z) (B.15) Ld-I z - C O S n + l j +  ~ ~) L ~ ' ) ( z )  = - ~  j = ,  ,, = 

where La(z) is given by (3.11), 

~,. ( , ) - (2n) , ,_ )  ... dogl...dog,,_ ) ~ ln[1-x"_(z, .)]  
J~' + I : '":Jd 

and (for v-- 1 ..... d -  1), z,, is given by Eq. (B.5). The remaining summation 
over j,~ can be performed [by switching the orders of summation and of 
integration in the integral representation (3.11) for La(z)] using the 
identity 

( y' In z'COSn+l) 
j a =  ) 

1 1 
= ( n +  1) In ~x+(z)  +In[1 --xZ~ - -  1) 

Z 
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which can be derived in much the same way as Eq. (A.18). On summing,  
one obtains 

,n, ( 1 )  
L d ( z ) =  1 +  n L d ( Z ) - - ~ n [ L d _ , ( z - - 1 ) + L d _ , ( z + I )  ] 

1 d 
+~ ~] n"-'@l:"(z ) (B.16) 

v = l  

where za = z - ~ a  = 1 cos o~k and 

'f?I? 1 ~ d  (Z)=  (27t)_  1 din, dOJd_ , In[1 x '-~ ~(Zd)] 

We are now going to estimate Nc, a~(z) and to obtain the desirable 
asymptot ic  expansion from Eq. (B.16) using the asymptot ic  expansion for 
Ld(Z) given by Eq. (3.25) much as we have done for W~"~(z). 

We obtain first an estimate for N~,.Jl(z) when z is independent of n and 
z > d. Obviously z,. >1 1 + z - d and 

x_(z , , )<~x_(1 + z - d ) <  1 (B.17) 

Hence 

I~  ~,.a~(z)l ~ 2n a- "Ilnl-1 - x"_ (1 + z - d)-II (B.18) 

that  all ~l.a~(z) become "exponentially" small for z > d  as which means 
n --* ~ .  Thus, 

L~'l(z) = Ld(Z) -- �89 - l [  L d_ ,(z -- 1 ) + Ld_ ,(z + 1 ) -- 2Ld(Z) ] 

+ O(exp[ - -7 ( z )n] )  (B.19) 

where y(z) is strictly positive and increasing for z > d. 
When z scales as z = z , , ( ( )=  d +  [n -p the estimate (B.18) is still valid 

and is quite satisfactory for our  purposes if p < 2, since in this case it yields 

I~l,d~(d+ ~n-~ = O ( n d - " e x p [ - - n l - P / z ? l ( O ] )  (B.20) 

with ~'1(~) strictly positive and increasing for ~ > 0. Thus, when p < 2 

L ~ , ~ ( d + ~ n - P ) = L a ( d + ~ n - , O ) _  i - t  L i n [ a - L ( d - - l + ( n - P )  

+ L a _ l ( d +  1 + ~ n - O ) - 2 L d ( d +  ~n-")]  

+ O ( e x p [ _ ) , l ( ~ ) n  1-0/2]) 

and the desirable expansion can be obtained making use of Eq. (3.25). 
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Now suppose p = 2. The estimate 

~a~(d  + (n -2) = O(n - k + l )  

can be obtained for ( > 0  as in the case of Atkd~(Z), which yields 

L ~'~(d + n - Z ( ) =  Ld(d + n -  2 ( ) -  ~n' - t [  Ld_ ~ ( d -  l + n -  "() 

+ L a _ t ( d + l + n - 2 ( ) - 2 L d ( d + n  2 ( ) ] + O ( N - t )  

Making use of Eq. (3.25), one obtains 

~,,~ - I - l [ 2 L d ( d ) - - L d _ l ( d - -  1 ) - L a _  j (d+ 1)] L a ( d + n  "-()=Ld(d)+~_n 

+ ( n - 2 W d ( d ) + O ( n  s) (B.21) 

Using the same trick as we used for W~d"~(Z), we arrive at the conclusion 
1 "~ that Eq. (B.21) is actually true for all ( ~ ( -  _~n-; oo). 

J l 9 _ 9  Finally, in the scales z = z , , ( ( ) = a - u r - n  - + ~ n - P ,  p > 2 ,  we are 
interested in the asymptotic behavior of the sequence of sums 

L a (.~,,(~))= ~ In(z,, l - ~ - ~ - 3  

j ~ s ' 2n \ (  I . . . . ,  I ) 

( n )  _ _ 1 Note that the sums L d (=) have a branch point at ~,,=~2L....~, but the 
~ ( n )  . 1 "  _ 9  sums L a (,.) are analytic till ~_AL... .~.2 ~ d - 2 n - ' n  - Since the distance from 

-"  we are still in the d -  ~nn - to the next maximal eigenvalue is of O(n- '-)  
scale z,, = d +  fin -2, ~ > - 2 z t  2, when we consider L~,~'~(z) to be at the point 
d [ ") _ 9  - u t ' n  -. Hence, the asymptotic expansions for L I f ~ ( d - ( n  -2) and 
W a ( d - ~ n  -2) as well as an estimate for ~V~am'(d-~n -2) [similar to 
(B.11)] can be established as above for their counterparts without tilde. 
Using then the Taylor  formula 

L~,~'~(d - ' " ~ ~ W a ( d - i T z  n ) ~_x-n - + ~ n - ' ) = L ~ 1 8 9  - ' ~ l ' l  t 2 -2 

+ ~2r / -2 , , i~o,p(d  - , , 2 
_ d - 

one arrives at 

7 " ( n ) l ~  I "~ - 2 ~  "fo'~IA t T z 2 n - 2 + ~ n - O ) = , ,  a tu_Src- n )+~n-PW~, ,~(d)+o(n  i,) (B.22) 

and 

d , -  ~_n-n - ) = L a ( d ) + � 8 9  

- -  1 -J ") 7r-n - Wd(d  ) + o(n-  2) (B.23) 

8 2 2 / 7 5 / L 2 - 1 9  
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